Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane
نویسنده
چکیده
A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.
منابع مشابه
On the Design of Nonlinear Discrete-Time Adaptive Controller for damaged Airplane
airplane in presence of asymmetric left-wing damaged. Variations of the aerodynamic parameters, mass and moments of inertia, and the center of gravity due to damage are all considered in the nonlinear mathematical modeling. The proposed discrete-time nonlinear MRAC algorithm applies the recursive least square (RLS) algorithm as a parameter estimator as well as the error between the real ...
متن کاملNeural-Based Compensation of Nonlinearities in an Airplane Longitudinal Model with Dynamic-Inversion Control
The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. ...
متن کاملF/A-18 Performance Benefits Measured During the Autonomous Formation Flight Project
The Autonomous Formation Flight (AFF) project at the NASA Dryden Flight Research Center (Edwards, California) investigated performance benefits resulting from formation flight, such as reduced aerodynamic drag and fuel consumption. To obtain data on performance benefits, a trailing F/A-18 airplane flew within the wingtip-shed vortex of a leading F/A-18 airplane. The pilot of the trail airplane ...
متن کاملClosed-loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experime...
متن کاملSusceptibility of F/A-18 Flight Controllers to the Falling-Leaf Mode: Linear Analysis
The F/A-18 Hornet aircraft with the original flight control law exhibited a nonlinear out-of-control phenomenon known as the falling-leaf mode. This unstable mode was suppressed by modifying the control law. This paper employs the falling-leaf phenomenon as an example to investigate the applicability of linear analysis tools for detecting inherently nonlinear phenomenon.Ahigh-fidelity nonlinear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011